
Apache Arrow is a trademark of The Apache Software Foundation • Apache License 2.0 • Learn more at arrow.apache.org • package version 8.0.0 • Updated: 2022-02

Arrow for R : : CHEAT SHEET
Arrow
Apache Arrow is a multi-language toolbox for accelerated data
interchange and processing. It specifies a standardized
language-independent column-based memory format for flat and
hierarchical data, organized for efficient analytic operations on
modern hardware.

The arrow R package provides access to the Arrow C++ library from
R, and supplies an interface with dplyr and other familiar R
functions.

Arrow Data Structures
Table: a tabular, column-oriented data structure capable of
efficiently storing and processing large amounts of data with
expanded column data types.

Dataset: similar to Table but with the capability to work on
larger-than-memory data partitioned across multiple files.

You can convert an existing data.frame or tibble object into
an arrow Table, and an arrow Table to a data.frame or
tibble to view or work with the data in R:

Read Individual Files
Read a data file from disk:

The arrow read_* functions return a data.frame, setting
as_data_frame = FALSE returns an arrow Table.

Read Multi-file Datasets
arrow defines Dataset objects for reading and writing very large
files or sets of multi-files. The functions open_dataset() and
write_dataset() enable analysis and processing of
larger-than-memory data.

Read in multi-files from a directory:

Read in multi-files partitioned by year and month within a
directory:

The file format for open_dataset() is controlled by the format
parameter, which has a default value of "parquet". Other supported
formats include:
● "arrow"
● "feather" or "ipc" (aliases for "arrow")
● "csv" and "tsv"
● "text" (generic text-delimited files - use the delimiter

argument to specify which to use)

Hive style partitioning is also supported, with partitions detected
automatically from the file paths:

Write Multi-file Datasets
Save partitioned data to disk based on columns in the data:

Default partitioning is based on any existing groups in the tibble
or data.frame.

Write Individual
Files
Write an R object df to disk:

To save a compressed file to disk, you specify the compression
algorithm with the compression argument:

Some file formats write compressed data by default. For more
information on the supported compression algorithms see:

Manipulate Larger-
than-Memory Datasets
arrow lets you work efficiently with large, multi-file datasets by
providing a dplyr—and many other R functions—interface to
query, manipulate and summarise large datasets before pulling
data into your R session with dplyrʼs collect():

In addition to most single-table dplyr verbs, many other function
mappings are implemented in arrow, including base R, lubridate,
and stringr functions.

library(arrow)
library(dplyr)

df_table <- arrow_table(df)

df <- as.data.frame(df_table)
df <- as_tibble(df_table)

df <- read_parquet("file.parquet")
df <- read_feather("file.feather")
df <- read_csv_arrow("file.csv")
df <- read_json_arrow("file.json")

open_dataset("folder")

open_dataset("folder",
 partitioning = c("year", "month"))

year=2021/month=12/data.parquet
year=2022/month=01/data.parquet
year=2022/month=02/data.parquet
…

write_dataset(df, "data_partitioned",
 partitioning = c("year", "month"))

write_parquet(df, "file.parquet")
write_feather(df, "file.feather")
write_csv_arrow(df, "file.csv")

write_parquet(df, "file.parquet",
 compression = "gzip")

arrow_table(starwars) %>%
 filter(homeworld == "Tatooine") %>%
 rename(height_cm = height,
 mass_kg = mass) %>%
 mutate(height_in = height_cm / 2.54,
 mass_lbs = mass_kg * 2.2046) %>%
 arrange(desc(birth_year)) %>%
 select(name, height_in, mass_lbs) %>%
 collect()

?write_parquet()
?write_feather()
?write_dataset()

https://www.apache.org/licenses/LICENSE-2.0
https://arrow.apache.org/docs/r/

Apache Arrow is a trademark of The Apache Software Foundation • Apache License 2.0 • Learn more at arrow.apache.org • package version 8.0.0 • Updated: 2022-02

Arrow for R : : CHEAT SHEET
Manipulate Larger-
than-Memory Datasets (cont)
arrow supports joins for joining multiple tables:

If you use arrow with partitioned data, arrow will only read from
the relevant partitions:

year=2021/month=12/data.parquet
year=2022/month=01/data.parquet
year=2022/month=02/data.parquet
…

For queries on Table objects, if arrow detects an unimplemented
function, it will automatically call collect() and pull the data
into R with a warning message:

For queries on Dataset objects (which can be larger than
memory), if arrow detects an unimplemented function, it will raise
an error. You will need to explicitly tell arrow to collect()
before the unimplemented function.

Zero-Copy R and
Python Data Sharing
arrow provides reticulate methods for passing data between R
and Python using the Python pyarrow library. Install, load, and
import pyarrow in a virtual environment:

Use pyarrow to create an Arrow array object in an R session:

Call a pyarrow function from your R session:

Transport Data with Flight
Connect to Flight RPC server to send and receive data with arrow:

Cloud Storage
Support (S3)
Arrow supports reading files and multi-file datasets from cloud
storage without having to download them
first—open_dataset(), write_dataset() and arrowʼs
read_* and write_* functions all accept an S3 Uniform
Resource Identifier (URI) as the source or destination file.

Read a file, a multi-file dataset, or partitioned multi-file dataset:

Create an arrow FileSystem object and pass that to arrowʼs
read and write functions:

Copy data from cloud storage to your computer:

Detailed instructions for working with S3 cloud storage are
available here: arrow.apache.org/docs/r/articles/fs

Additional Resources
Arrow R Cookbook: arrow.apache.org/cookbook/r/

Reference guide to arrow in R: arrow.apache.org/docs/r/

Arrow communities: arrow.apache.org/community/

robot <- data.frame(
 species = c("Human", "Droid", "Ewok"),
 bot = c(FALSE, TRUE, FALSE)
)

arrow_table(starwars) %>%
 select(name, species) %>%
 left_join(robot) %>%
 collect()

open_dataset("folder",
 partitioning = c("year", "month")) %>%
 filter(year == 2022) %>%
 group_by(month) %>%
 summarise(total = sum(amount)) %>%
 collect()

Warning: Expression
unimplemented_function() not supported in
Arrow;
pulling data into R

library(reticulate)

virtualenv_create("arrow-env")
install_pyarrow("arrow-env")
use_virtualenv("arrow-env")
pa <- import("pyarrow")

a <- pa$array(c(1, 2, 3))

table1 <- arrow_table(starwars[1:5,])
table2 <- arrow_table(starwars[11:15,])

pa$concat_tables(tables = list(table1,
table2)) %>%
 collect()

library(reticulate)
library(arrow)
install_pyarrow()

demo <- load_flight_server("flight_server")
server <- demo$FlightServer(port = 8089)
server$serve()

client <- flight_connect(port = 8089)

flight_put(client, df, path = "data/df")
df <- flight_get(client, "data/df")

df <- read_parquet(
 "s3://ursa-labs-taxi-data/2019/
 06/data.parquet")

df <-
open_dataset("s3://ursa-labs-taxi-data")

df <- open_dataset(
 "s3://ursa-labs-taxi-data",
 partitioning = c("year", "month"))

bucket <- s3_bucket("ursa-labs-taxi-data")
df <- read_parquet(bucket$path(
 "2019/06/data.parquet"))

copy_files("s3://ursa-labs-taxi-data",
 "~/nyc-taxi")

https://www.apache.org/licenses/LICENSE-2.0
https://arrow.apache.org/docs/r/
https://arrow.apache.org/docs/r/articles/fs.html
https://arrow.apache.org/cookbook/r/
https://arrow.apache.org/docs/r/
https://arrow.apache.org/community/
https://arrow.apache.org/docs/r/reference/flight_put.html

